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ABSTRACT
Human- or expert-generated records that describe the be-

havior of engineered systems over a period of time can be useful
for statistical learning techniques like pattern detection or out-
put prediction. However, such data often assumes familiarity of
a reader with the relationships between entities within the sys-
tem—that is, knowledge of the system’s structure. This required,
but unrecorded “tacit” knowledge makes it difficult to reliably
learn patterns of system behavior using statistical modeling tech-
niques on these written records. Part of this difficulty stems from
a lack of good models for how engineers generate written records
of a system, given their expertise, since they often create such
records under time pressure using shorthand notation or inter-
nal jargon. In this paper, we model the process of maintenance
work order creation as a modified semantic fluency task, to build
a probabilistic generative model that can uncover underlying re-
lationships between entities referenced within a complex system.
Compared to more traditional similarity-metric-based methods
for structure recovery, we directly model a possible cognitive
process by which technicians may record work-orders. Math-
ematically, we represent this as a censored local random walk
over a latent network structure representing tacit engineering
knowledge. This allows us to recover implied engineering knowl-
edge about system structure by processing written records. Ad-
ditionally, we show that our model leads to improved generative
capabilities for synthesizing plausible data.

∗Address all correspondence to this author.

1 INTRODUCTION
Due in part to an explosion of interest in statistical modeling

techniques, specifically machine learning (ML), much recent ef-
fort has been devoted to using various forms of engineering data
for training these models. These models, trained on historical
engineering data to detect patterns of classification, fault detec-
tion, performance estimates, etc., promise to reliably automate
many of these labor-intensive tasks, freeing the time of design-
ers and maintainers for more high-level decisions. However, in
technical fields like engineering, the available historical data is
often difficult to use directly — the experts creating it in the past
generally assumed it would be read and adapted by colleagues
or experts in their own field. This causes analysts to, quite of-
ten, lack the information needed to appropriately represent and
process this data. One cannot simply use, e.g., written lab note-
books, technical reports, or maintenance work-orders (MWOs)
as is, taking them at face value: words and concepts with more
general meaning to the layman will have domain-specific techni-
cal application that must be accounted for if a statistical model
is to learn a robust representation of the semantic space. In this
paper, our goal is to infer how the original data creators/experts
structure their own knowledge about the problem at hand. This
“structured knowledge” can then be used create more reliable
models for engineering learning tasks.

This paper presents initial techniques to automatically infer
key parts of this tacit structured knowledge, and explores a mech-
anism to extract it from observations/historical records written
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by human experts. To do this, we frame the act of recording en-
gineering events as a type of memory recall, which we assume
occurs within a broader “network” of system relationships that
structure the expert’s knowledge about a system’s behaviors (but
that we do not have direct access to and thus must infer through
examples). Specifically, we show that:

1. By explicitly modeling work-order generation as non-
Markovian memory recall over learned object relationships,
we can more accurately recover those relationships than by
using more traditional token similarity measures, and subse-
quently,

2. learning such relationships provides a generative model of
each object’s conditional relationships in the form of a
graph, for which performing a random walk from points
of interest (e.g., a Failed part) will synthesize more realis-
tic new data.

We demonstrate this on two examples of maintenance work
orders: (1) synthetically generated work orders from real-world
engineering systems with a known ground-truth structures; and
(2) actual maintenance work orders from an excavator. In both
cases, we show that by building a probabilistic model that ac-
counts for (and subsequently learns) how experts structure their
implicit knowledge of a domain, one can often achieve signifi-
cantly better performance (as measured by standard information
retrieval metrics) than existing methods of structure recovery.

2 RELATED WORK
Using data to infer the underlying structure of a complex

system is a long-standing goal within both systems engineering
and other domains that depend upon accurate network recov-
ery, such as: biological systems and disease transmission vec-
tor modeling [1, 2]; uncovering economic interactions and social
networks [3, 4]; inferring physical models by learning governing
equations [5, 6]; or even description generation in computer vi-
sion, and quantifying how humans reason about belonging and
causality in ambiguous images or contexts [7, 8]. For written
(text-based) documents specifically, we can group major meth-
ods to perform structure recovery from unstructured written doc-
uments into roughly three camps: (1) prescriptive rule definition,
(2) training statistical models (NLP), and (3) “folksonomies” and
tag-based crowdsourcing.

2.1 Prescriptive Rules
The most straight-forward way to make tacit knowledge

computable is to explicitly design the relationships as they are
assumed to exist. An expert (or set of experts) define what ob-
jects are allowed to exist in the domain, and how those concepts
relate to each other. These rules are then mapped onto the ob-
served data, similar to constructing a thesaurus. This manually

constructed rule-set can take the form of ontologies, e.g., but they
are always structured representations formed from from mixtures
of domain expertise and example data, which can then be used
to parse remaining data, and restrict the format of future data.
For example, ISO-15926 defines a data model [9,10] with which
one can constrain engineering records to have precise, unambi-
gious meanings, and later work built on the standard construct
ontologies with which to reason over these meanings and their
relationships [9, 11–13].

In practice, however, a particular domain or data-set will
not have existing, applicable ontologies or data structures, and
time investment needed to create them for sufficiently general-
ized usage is commonly out-of-scope for analysts to dedicate.
Some work has been done to automate this process [14], but
such techniques generally require us to rely on language-specific
syntactical rules (i.e., grammar). Data-entry errors and shorthand
are ubiquitous in technical records, where grammar is often low-
priority if system-familiarity is assumed. In these cases, sophis-
ticated systems of rules are still often developed, potentially with
reduced formalism or scope, taking the form of keyword recogni-
tion and filtering rules to find a priori “useful” patterns for analy-
sis [15,16] In engineering design, similar manually-created rule-
sets that define concept relationships are involved in constructing
Design Structure Matrices (DSMs), which are often derived from
expert input or technical/project documents [17–19]. Regardless,
this paper assumes that the need for low-cost, low effort esti-
mates of a system’s “rules” is not met by requiring a designer to
manually intervene.

2.2 Natural Language Processing
Rather than build patterns manually, natural language pro-

cessing (NLP) often deals with the use of significant quantities of
text to discover latent patterns automatically. This requires find-
ing mathematical representations of text, like “bag-of-words”
weightings [20], topic models [21, 22], or semantic vector em-
beddings [23, 24]. These transformations enable the use of text-
based documents in statistical models that can, for instance, train
a classifier to automate labeling of work orders [25]. The suc-
cess of this approach is fundamentally linked to the notion that
supervised ML models use labeled training data to learn these
patterns, and the quality of the model increases with the amount
of available labeled data-points — using this approach with few
labels presents a problem of diminishing returns. Time saved
by automating document classification scales with the amount of
time spent labeling document classifications.

This trade-off is problematic in highly technical and jargon-
filled domains, where existing models from more generalized
training sets cannot be easily or reliably transitioned. In addition,
the actual patterns being “learned” are quite often difficult to in-
terpret and use for humans [26], stemming from the so-called
“black box” nature of these models, despite an inherent need to
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justify our engineering decisions with evidence-based reasoning.
This paper puts forward an unsupervised model, able to function
with few training samples, but only as a stepping stone in the
process toward encoding the types of prescriptive knowledge that
can be used to communicate and train future operators/designers.

2.3 Folksonomies

In contexts where dedicated annotation labor can be dif-
ficult to secure, significant research has been done to present
less restrictions to casual annotators, and understand how nat-
ural classification and labeling schemes arise in social communi-
ties, e.g. online tagging efforts [27]. Tags, a form of multi-label
classification, allow concepts to be derived freely in the course
of work, where repeated and cross-contexutal usage leads to a
naturally-arising set of useful, domain-specific concepts; this is
commonly referred to as a folksonomy, a portmanteau of “folk”
and “taxonomy” [28]. Because folksonomies generally ask users
to determine minimal representative labels rather than strict clas-
sifications (i.e., tags), each label can be seen in multiple contexts.
The predominant way to analyze these tags, then, is by their co-
occurrences with each other: intuitively, highly co-occurring tags
are considered “similar.” [29, 30]. A basic, but commonly used
measure of this co-occurrence is the cosine similarity: if, over a
set of C documents, tag tk has binary vector uk = {1c(tk) : c∈C},
then the cosine similarity s between the binary occurrence vec-
tors of the tags t1; t2 is defined as:

s(t1; t2) =
u1 ·u2

‖u1‖‖u2‖
(1)

This measure has seen consistent usage in folskonometric meth-
ods to structuring relationships between tagged concepts in use-
ful ways [31–33]. Because various annotators will perceive the
importance and relevance of each tag differently in each con-
text, these ambiguities are typically overcome through crowd-
sourcing, by having large numbers of users tag. This allows a
statistical “smoothing” over differences in expertise. However,
in the case of technical tags from a few experts, this benefit from
large numbers of annotators is not something that we can count
on. Additionally, the types of relationship information we might
want is not purely statistical/distributional similarity, as experts
creating documents will have several core views about what “be-
ing related” in their system entails. Consequently, we believe it is
important to exploit potential cognitive processes by which these
tags might be produced, to enforce a greater degree of informa-
tion precision than typical similarity measures might allow for in
their desire for increased information recall.

3 MODELING WORK ORDER CREATION
As discussed above, common techniques for discovering

structure in human-annotated or natural-language data primarily
rely on frequency and co-occurrence information of discrete ob-
jects/concepts. These are powerful and easy-to-apply models of
speech or the written word, but can miss key causal links implied
in the original text, which are difficult to extract this way without
significant amounts of data or relevant pre-training. Instead, this
paper proposes that by explicitly modeling the conditional dy-
namics of how humans recall concepts within this data—which,
for the purposes of this work will be limited to MWO’s—we
can extract the conditional relationships between the mentioned
objects or concepts that best match what was recorded by the
experts.

This section first describes the concept of semantic flu-
ency—a existing psychological theory of concept recall—and
how that theory relates to the construction of written engineer-
ing documents, specifically MWOs in this paper. We then de-
scribe a computational method to implement the concept of se-
mantic fluency using Initial-Visit Emitting Random Walks (IN-
VITE) [34]—a probabilistic model of graph walks that is non-
Markovian.

3.1 Semantic Fluency
When a technician begins to record a MWO, they try to

search their memory for words that represent concepts relevant
to the MWO itself. These consist of items, problems that were
encountered with some items, and how other items were used
to solve these problems [35]. The exact psychological mecha-
nisms by which a person searches through their memory is still
an active area of research and has been modeled in various ways.
Some recent studies [36] propose that concepts are recalled se-
quentially by foraging in “semantic patches”—in brief, that hu-
mans sequentially recall concepts that are “near” each other in
some person-specific semantic space built through experience.

Specifically, these patches are thought of as existing in a
high-dimensional concept-space,1 and the likelihood that some
concept is recalled next is based on combining both associative
and categorical knowledge into a similarity measure between the
current recalled entity and the next. The classic psychological
experiment for this model is the Semantic (or, Verbal) Fluency
test:

1. Recall and record an object (e.g., an animal);
2. Record the next object of this type you think of;
3. Continue recording for the remaining time

The reader is encouraged to try this process out for them-
self. One advantage of this test lies in not restricting (or having

1Though less applicable in technical or domain-specific corpuses where ex-
amples are too few and far between, this is the intuition that leads to the success
of vector-based semantic embeddings like gloVe or word2vec [23, 24].
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to specify apriori) the relationship between objects required to
record subsequent ones. For example:

dog→ cat→ tiger→ lion→ elephant→ wolf · · ·

For example, it is common for animal-based semantic fluency
lists to start with household pets, potentially switching to entirely
unrelated categories like “large cats,” for further exploration, be-
fore either retracing back to a previous category (e.g., canines to
“wolf” via “dog”) or onward via new similarities (e.g., African
animals to “elephant” via “lion”). Different people can create
different fluency lists, owing to differences in how they psycho-
logically structure relationships between concepts.2

The key contribution of this work is to propose that explic-
itly modeling this process lends itself well to recovering engi-
neering knowledge from text-based technical records. While,
technicians are not purely sampling arbitrary system concepts,
as you might a list of animals, we nevertheless assume that each
subsequent concept written in a MWO is directly conditional
on what was written previously. 3 Then, an MWO consists of
“jumps” between concepts that depend upon previously “visited”
concepts. This assumption allows us to infer relationships be-
tween concepts given examples of MWOs. This boils down to
two key components of the technician’s cognitive task when re-
calling relevant information to write down MWO’s:

- A technician records concepts sequentially, as he or she re-
calls unique defining characteristics of the MWO.

- They recall these characteristics by remembering links be-
tween them, and any recently recalled characteristics.

This differs from a standard Bag of Words model—where
all entities occurring in a document are assumed to be linked
through co-occurrence—and from nth-order language mod-
els—where relations are limited to the nearest (or, previous) n
entities. In technical shorthand (like MWOs), objects listed later
on may be linked to any of the previously mentioned objects,
not strictly those directly adjacent to it. For instance, the MWO
“Leaking hydraulic valve; cleaned oil spill and replaced O-ring”
consists of a sequence of concepts (leak→hydraulic→valve...),
not all of which share the same causal structure: perhaps “hy-
draulic”, “valve”, and “leak” are all potentially subsets of a hy-
draulic “system”, but “replace”, “clean”, and “oil” all have po-
tential to span subsystems. Similarly, in this MWO, “oil” would
likely be considered as linked with “leak”, more than it would to
the closer entity “replace”. This illustrates nicely the trade-off

2e.g.

dog→ walk→ run→ gym→ ··· vs

dog→ home→ family→meal→ ·· ·

3This is standard practice in the language modeling domain [37].

between categorical and associative memory foraging that [36]
discusses at length, and is precisely the feature of MWOs we ex-
ploit to extract a more sparse representation of system relation-
ships through the Initial-Visit Emitting Random Walks semantic
fluency model, which we detail next.

3.2 Initial-Visit Emitting Random Walks
Based on the above modelling assumptions, we demonstrate

the application of an Initial-Visit Emitting Random Walks (IN-
VITE) as initially described by [34], on recovering system struc-
tures from MWOs. Say the set of components or concepts in our
system is denoted by the node-set n. A set of T tags 4 can be
denoted as a Random Walk (RW) trajectory t = {t1; t2; t3; · · · tT},
where T ≤ n. However, this limit on the size of T assumes tags
are a set of unique entries: any transitions between previously
visited nodes in t will not be directly observed, making the tran-
sitions observed in t strictly non-Markovian, and allowing for a
potentially infinite number of possible paths to arrive at the next
tag.

Instead of directly computing over this intractable model for
generating t, the key insight from the original INVITE paper
comes from partitioning t into T −1 Markov chains with absorb-
ing states, where previously visited nodes are transient states,
and unseen nodes are absorbing. It is then possible to calculate
the absorption probability into the kth transition (tk → tk+1) us-
ing the fundamental matrix of each partition. If the partitions
at this jump consist of q transient states with transition matrix
amongst themselves Q(k)

q×q, and r absorbing states with transi-

tions into them from q as R(k)
q×r, the Markov chain M(k)

n×n has the
form

M(k) =

�
Q(k) R(k)

0 I

�
(2)

where 0, I represent lack of transition between/from absorbing
states. It follows from [38] that the probability P of a chain start-
ing at tk being absorbed into state k +1, letting N = (I−Q)−1, is
given as

P(tk+1|t1:k;M) = N(k)R(k)
���
q;1

(3)

The probability of being absorbed at k + 1 conditioned on
jumps 1 : k is thus equivalent to the probability of observing the

4While traditional application of “tagging” assumes the set of labels to be
strictly un-ordered (as in multi-label classification), we follow [15,35] by assum-
ing tags are generated directly from text by keyword recognition. It is thereby
trivial to reverse the process, assigning each tag a position as the first time its
corresponding keyword was recognized in the original text.
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k + 1 INVITE tag. If we approximate an a priori distribution of
tag probabilities to initialize our chain as t1 ∼ Cat(n;q) (which
could be empirically derived or simulated), then the likelihood of
our observed tag chain t, given a Markov chain, is

L (t |q ;M) = q(t1)
T−1

Õ
k=1

P(tk+1 | t1:k ; M) (4)

Finally, if we observe a corpus of tag lists C = {t1; t2; · · · ; tc},
and assume q can be estimated separately from M, then we can
finally frame the problem as minimizing our loss function, the
negative log-likelihood of our corpus over M:

M∗ = argmin
M

C

å
i=1

Ti−1

å
k=1
− logP

�
t(i)
k+1

���t(i)
1:k;M

�
(5)

3.3 Implementation
As stated in Eq. 5, the optimization is constrained; in addi-

tion to requiring row-stochasticity, the matrix N is only guar-
anteed to exist if self-transitions are disallowed, as proved in
[34]. Similar to that implementation, we introduce a softmax
re-parameterization of M that allows the optimization to be un-
constrained in Rn×n, and guaranteeing row-stochasticity.

Mi; j←
exp(Mi; j)�

å j exp(Mi)
�

j

However, we introduce several modifications to this re-
parameterization:

Edge Weights Because it is important for our purposes to esti-
mate the weight (i.e., importance) of each relationship, we to not
require (as in [39]) that the structure of M is un-weighted—in
this case each relationship would either exists or not exist. How-
ever, sparsity of M is still desirable, so we apply an L1-penalty to
the loss function, adding an (a=T ) · ‖M‖1 term to Eq. 5. The pa-
rameter a should generally be tuned via cross-validation where
possible, but to demonstrate effectiveness in an unsupervised
setting (as is expected to be the case when no “true” M is yet
known), we use a = 0:01, which was found to be robust to sen-
sitivity trials for one log-factor in either direction.

Edge Direction In addition, Eq. 5 implies that M represents
a directed graph. Though we model each tag as being gener-
ated conditional on preceding tags alone, we wish to preserve
the intuition that relationships between tags are still assumed to
be bi-directional, while not strictly enforcing M to be symmetric
(undirected), as in [39]. Put simply, one-directional relationships

can be useful when they are strictly the case (e.g., oil→leak), but
we may not wish to encourage one-directional relations that are
quirks of imbalanced data and how people talk (gear 1↔ gear 2)
To ensure the recovered weights in each direction are meaning-
ful, and to speed-up recovery of what we assume is a “symmetry-
dominant” M, we bias it toward symmetry via an update to each
entry prior to softmax:

Mi; j←max
�

Mi; j ; M j;i
	

Because of these alterations, the analytic gradient for the IN-
VITE loss function described in [34] no longer applies; instead,
we make use of automatic differentiation as a means to ensure ac-
curate gradient calculations under the above modifications [40].
The package autograd [41] was used to exploit a number of
convenience functions for doing so, in the Python programming
language.

4 EXPERIMENTS
The first experiment demonstrates the tractability of the IN-

VITE model in the context of MWO-type data by generating syn-
thetic MWOs from real engineering systems as described in [42].
We use these synthetic MWOs to (1) measure the network re-
covery accuracy of the INVITE model, (2) compute the sample
efficiency of the INVITE model, and (3) compare the INVITE
model to co-occurrence similarity thresholding models currently
used in the state-of-the-art.

Second, we apply our proposed method to a corpus of real
excavator MWOs, for which a “true” underlying structure does
not yet exist. We compare the plausibility of work orders sam-
pled from our network estimation to the original dataset and
benchmark our model with respect to purely associative sam-
pling.

Due to the high dimensionality of Eq. 5, and the noisy na-
ture of observations, we use Stochastic Gradient Descent (SGD)
to perform optimization of M. Specifically, we use the ADAM
algorithm [43], which modifies the gradient estimation for each
iteration with first- and second-order momentum estimates from
previous iterations, improving convergence behavior. Because
each tag transition is considered a reliable observation, and the
underlying structure of M is generally sparse relative to the
complete adjacency graph between the set of all tags, a learn-
ing rate of 0.9 was used, but with minibatches of 5 censored
lists each. Exponentially-weighted learning-rate decay was used,
along with time-discounted averaging of M, with settings as sug-
gested by [44].

4.1 Exp. 1: Recovering Known Engineering Networks
To validate the ability of our method to accurately recon-

struct engineering networks under varying data quantities, we
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FIGURE 1: Comparing INVITE and Cosine-Similarity thresh-
olding performance for recovering true network structure. Top:
Recovery performance (precision vs. recall) for the drivetrain
network. Trained on 18 samples (“work orders”), at 3 tags each.
Bottom: Same comparison for the more complex aircraft net-
work, trained on 1634 samples at 5 tags each. Also shown are
the F1-score iso-lines, along with F1-optimal thresholds (s ) for
each model setting.

first synthesize censored tag lists from true component networks
described in [42, 46]: a bicycle (n = 10), an automotive drive-
train (n = 18), and an aircraft (n = 375). Drawn layouts for each
network are provided for reference in the appendix. For each
network, censored random walks were generated by performing
a random walk over the nodes until either 100 transitions or all
nodes have been visited. The first unique visit to each node was
recorded to simulate censoring, and the lists were clipped to the
first 3,4, or 5 node visits, to reflect the typical number of tags
seen in real MWO datasets (see Exp. 2, below, for an example).
The number of censored lists used to train the models was evenly
sampled at 11 intervals on a log-scale from 10 - 5000 lists, for a
total 3×11×3 = 108 trials.

Because the original networks are relatively sparse (See Ta-
ble 1), the classification of edges as “existing” or “not existing”

FIGURE 2: Mean average precision score (APS) for the three
system networks of [42], shown with mean APS over sample
lengths T ∈ {3;4;5}, and a 1000-bootstrap-sample 95% con-
fidence interval. INVITE consistently outperforms similarity
thresholding in low-data, low-complexity scenarios. In complex
networks, performance is comparable until a significant number
of samples are available, after which a lack of sparsity causes the
cosine method’s performance to plateau.

can be framed as a class-imbalanced information retrieval prob-
lem. Given some measure of node similarities (entries in the
recovered adjacency matrix), we wish to threshold M such that,
for a given threshold value s ∈ [0;1], the entries of a thresholded
adjacency matrix Ms are given by:

Ms
i; j =

(
1; if M∗i; j ≥ s

0; otherwise

Prior to selecting a specific threshold, it is useful to recognize
how robustly each model performs under varying threshold val-
ues, since the underlying “true” networks are available. For
class-imbalanced learning problems like this, precision-recall (P-
R) curves can elucidate model robustness under varying thresh-
old sensitivities [47]. In Fig. 1, the precision-recall curves for
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FIGURE 3: Mean F1 reconstruction scores for the three system networks of [42], shown with mean score over sample lengths T ∈
{3;4;5}, and a 1000-bootstrap-sample 95% confidence interval. In an unsupervised context (top row), thresholds for node similarity
were selected using a knee-finding heuristic [45], for where the EDF of edge-weights showed maximum curvature. In a supervised
context (bottom row), the optimal threshold was selected as one that maximized the model’s F1-score. The INVITE method significantly
outperforms pure co-occurrence similarity thresholds as the number of samples increases, and because the EDF is much more spread-out
for cosine similarities, picking a “good” threshold is much more difficult than the sparsity-inducing INVITE models.

TABLE 1: Engineering component network summary for Exper-
iment (1). Network models adapted from [42].

Model Nodes Sparsity

bicycle 10 80:0%

drivetrain 18 88:4%

aircraft 375 97:5%

the drivetrain model demonstrate that INVITE can quickly re-
cover simpler networks with under 20 observations at relatively
few “tags” each, while Cosine Similarity only robustly captures
the global structure of the network—precision is relatively in-
variant over wide ranges of recall. This is even more pronounced
for more complex networks, with the INVITE model capable
of achieving either high precision or high recall, while the Co-
sine Similarity threshold has difficulty improving it under any
circumstance. One way to summarize this robustness under vary-
ing threshold is calculate the average the precision score (APS)
gained by each threshold’s increase of recall R:

APS = å
s

[R(si)−R(si−1)]P(si) (6)

The APS score will not give a “good” s , but instead summa-
rizes the total “goodness” of each model across possible s . APS
scores for the INVITE and Cosine Similarity models are shown
against training set size in Fig. 2. APS eventually plateaus for
the cosine model in every case. INVITE can perfectly recover
the bicycle and drivetrain structures after around 100 samples.
For the aircraft network, while INVITE has nearly identical per-
formance to cosine similarity below 500 samples, INVITE’s APS
almost reaches 1.0 with 5000 samples.

In practice, selecting the value for s will depend on whether
training examples are available: if not, a heuristic threshold
such as knee-finding can be applied; if examples are available,
it is possible to use performance measures appropriate for im-
balanced learning problems (e.g.the F1-score), and optimize the
threshold for this value. In the common case that no training la-
bels are available (no “true” structures are known), a common
heuristic for thresholding values posits that diminishing returns
occur for the retrieval function after the point of maximum cur-
vature on the empirical distribution function (EDF) of values to
threshold at the point of diminishing returns—e.g., using a so-
called “knee-finding” algorithm. To test the performance of both
the cosine-similarity (bag-of-words) and INVITE recovered net-
works with respect to the originals, we apply the kneedle al-
gorithm [45] to calculate a threshold s . The F1-score can then
be calculated for Ms as for each training-set size (see unsuper-
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FIGURE 4: Mean plausibility ratio for 100 MWOs, both real and
synthesized by sampling Ms recovered from INVITE and Co-
sine methods. Confidence intervals show the inter-quartile range
of 1000 bootstrap samples.

vised context in the top row of Fig. 3). If parts of the underlying
structure are known a priori, it is possible to tune s so that the F1-
score of Ms vs. the “test-set” (the true M) is maximized. These
can likewise be found on the bottom of Fig. 3

4.2 Exp. 2: Real-World Excavator MWOs
To assess the applicability of INVITE to real-world scenar-

ios, we apply our model to tags annotated for a mining dataset
(8264 MWOs) pertaining to 8 similarly-sized excavators at var-
ious sites across Australia [15, 48]. The tags were created by
a subject-matter expert spending 1 hour of time in the annota-
tion assistance tool nestor [49], using a methodology outlined
in [50]. The tag annotations were limited to objects (bolt, motor,
fan, etc.), problems (leak, missing, cracked, etc.), and solutions
(replace, repair, stick, etc.) that occurred at least 50 times each in
the original corpus, for a total of 77 unique tags. Subsequently,
the same settings for solving Eq. 5 were used as in the previ-
ous experiment, though the optimization was initialized with the
cosine similarity matrix to speed convergence.

To test whether the INVITE model was able to learn a robust
representation of the system structure, we perform blind tests
of the generative capability of each recovered network. First,
the starting tag probability q was set as the observed distribu-
tion of first tags in the original dataset. Then, censored random
walks of length T = 5 were sampled from both an INVITE and a
cosine-similarity recovered network, without thresholding. This
is intented to preserve weighted relationships between tags, for
the purposes of data synthesis. The expert was then given a
list of 100 randomly mixed MWOs, made from 40 real work-
orders,5 30 INVITE censored lists, and 30 cosine-similarity cen-

5The process in [49] displays extracted concepts in order of their statistical

FIGURE 5: Thresholds selected by knee-finding heuristic (unsu-
pervised) and optimal F1-score (supervised). The cosine similar-
ity performance was more sensitive to s selection than INVITE.

sored lists. The resulting lists were filtered to only contain lists
of tags not explicitly found in the original data. The expert
was then asked to blindly classify each MWO as being “plau-
sible” or “not plausible”, such that an MWO would or would not
reasonably occur based only on the tags in each. The fraction
of real, INVITE, and cosine-generated work orders marked as
“plausible” can be found in Fig. 4. Both the real and INVITE-
synthesized MWOs are within a similar plausibility range, be-
tween 60%− 80%, while the cosine similarity MWOs are be-
tween 40%−60% plausible, overall.

5 DISCUSSION
To enable optimization in continuous space, our model does

not enforce un-weighted, un-diriected graphs, as in Zemla &
Austerweil’s extension of the INVITE model that optimizes in
discrete space [39]. Their version is intended to induce spar-
sity without artificially introducing new tuning parameters, as we
have in introducing s and a . In practice, however, it is reason-
able to select a low-valued positive s � 1, or use a knee-finding
heuristic on the EDF of edge weights. This is because the L1
penalty on edge weights, plus the tendency of INVITE to route
random walks through commonly-visited chokepoint nodes, nat-
urally drives “unnecessary” edge weights to near-zero probabil-
ity. As seen in Fig. 5, the “knee” in the edge-weight EDF for
INVITE was nearly always near-zero, for all experiments. Even
when oracle information was allowed to tune s , the best F1-score
was still to be found strictly below s = 0:3, with a majority be-
low 0.1. In this sense, the signal-to-noise ratio of our INVITE
model is quite high, making the selection of a good s much less

importance, for the purposes of keyword recognition. As such, the annotator
does not interact with the original work-orders directly during tagging.
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difficult.
In truth, this thresholding does not completely solve the

problem of knowledge extraction. If the goal of automatically
extracting knowledge graphs is to suggest whether causal rela-
tionships exist between tags, and not primarily to synthesize data,
weights are not needed in communicating these links, and may
obfuscate important understanding below vastly more obvious
relationships.

Another issue related to thresholding is how the row-
stochastic constraint affects edge-value distribution: technically,
each row in our model will be re-normalized every iteration, in-
dependent of other rows. This means that the row-normalization
inherently de-symmetrizes M. In reality, though we might model
some asymmetry in node relations6, the modality of direction
being discovered by sentence-structure (ordering of the written
tags) is not equivalent to the types of directionality we might
want to discover. In memory, it could be beneficial to assume
that the probability of transitioning between tags should be bi-
directional, and allow desirable directionality to be proxied by
local tree-like structures that reduce centrality of tags farther
out. This bi-directional assumption implies making M a doubly-
stochastic matrix. This has the added benefit of placing M on
a simplex, i.e., the space of permutation-invariant matrices be-
longing to the Birkhoff Polytope. There are recent develop-
ments [51, 52] in this space that could prove highly useful at
reducing the state-space we search over.

Finally, our method is not intended to serve as a complete,
end-to-end processing of natural language text into structured
knowledge. Ultimately, the final structuring will need to be
performed by humans. Instead, we believe the most efficient
tools to assist in knowledge recovery will pose annotation ques-
tions in a lower-dimensional state-space, easier for a human to
verify or edit quickly. Figure 6 illustrates how we believe IN-
VITE takes steps toward this goal. Common structure recov-
ery techniques, like cosine-similarity thresholding, tend to dis-
cover global structure quite well, but over-estimate the connec-
tivity of local communities where hierarchical relationships are
unknown-yet-assumed by the data. By definition, co-occurrence
(bag-of-words) metrics are treating these work-orders more like
un-censored random walks, starting from any tag and transition-
ing to any other in the list. Consequently, the local resolution of
the structure it approximates is going to be fundamentally lim-
ited for tree-like communities, more reflecting a 2nd- or 3rd-order
power graph7 of the true, underlying structure.

In contrast, INVITE tends to concentrate edges to nodes that
are highly central, forming “chokepoints” where global-scale
transition mechanisms are unknown, but largely preserving local
tree-like structures in outer communities. From an active learn-

6e.g.in hierarchies: “gear-1” may be a member of “gearbox,” making the link
gear-1→ gearbox a stronger link in a technician’s head than the other direction.

7The graph G’s nth-order powergraph P(G;n) has an edge between any two
nodes if the minimum path length between those nodes in G is at most n.

ing perspective, humans tend to be quite good at verifying global-
scale connections as viable or not—editing spurious connections
in every over-dense local community is a much more difficult
task for us than recognizing spurious individual connections to a
small set of highly abstract concepts.

We believe this feature can be exploited to create better
knowledge-structuring assistance tools in an active learning con-
text. Such a tool could additionally benefit from a recent explo-
sion in interest for preserving hierarchical relationships in vector
space, e.g., via Poincaré embeddings [54]. Additional care must
be taken to allow flexible annotation of different kinds of rela-
tionships,8 and allow for multiple (potentially disagreeing) an-
notators, subsequently suggesting relationship types for review.
We envision a type of “topic model” over the space of knowledge
graphs [55], or potentially a set of independent “graph compo-
nents” that maximally explain the distribution of edge types in a
community [56].

6 CONCLUSIONS AND FUTURE WORK
This paper presented a method to recover a structured rep-

resentation of engineering knowledge from unstructured written
documents (specifically, Manufacturing Work Orders), based on
initial-visit emitting random walks (INVITE). Compared to pre-
vious methods, our technique preserves local connectivity struc-
tures, even in tree-like communities. This can lead to (1) better
generative capability for synthesizing plausible documents (such
as work-orders) in a simulation context; and (2) allowing us to
cast the knowledge-structuring problem in probabilistic context
that is potentially amendable to active-learning; this can mini-
mize the number of local-scale edits needed relative to global-
scale, abstract connections that humans can easily spot and cor-
rect.

Overall, the model we describe here can enable experts and
novices alike to benefit from tacit system knowledge contained
within frequently unused mountains of technical work-orders, by
quickly prototyping computable representations of this knowl-
edge for downstream usage in analysis pipelines. We believe
that by explicitly incorporating cognitive theories into our model-
ing assumptions about how technicians might represent and then
recall their knowledge in maintenance work-orders, we can ac-
celerate the training and use of unsupervised data-driven expert
systems in engineering design.
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8e.g., Walsh et al.actually construct three types of structured system represen-
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FIGURE 6: Comparing aircraft model network reconstruction for F1-optimal INVITE (F1 = 0:75) and Cosine Similarity (F1 = 0:49)
methods. Shown are the original “true” adjacency matrix M, its 2nd-order power graph (M)2, and the thresholded adjacency matrices
Ms for both INVITE and Cosine Similarity. For visualization, the matrix rows/columns are sorted by the closeness centrality of each
node [53], better indicating which nodes form core/integral components in the system (upper-left) and which are more likely a part of
localized “edge” communities (bottom and right). These edge communities are highlighted in the graph layouts on the right, where
nodes in the top 25th percent most central (and their edges) are transparent. INVITE directly estimates the underlying structure of M by
accounting for node censoring in observations, concentrating uncertain edges into a few highly-connected “chokepoint” nodes. Cosine
similarity mistakes co-occurrence of components in a sample for direct relationships, forming dense, spurious communities throughout
the graph that are reflective of higher-order powers of M, as shown here. Concentrating the false-positive relationships (FP) in a few
highly central nodes makes INVITE a viable candidate for querying human experts for annotation/critique in an active-learning context.

7 DISCLAIMER

The use of any products described in this paper does not
imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that products are
necessarily the best available for the purpose.
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